List of Publications Dr. Antonina Lavrentieva

Showing results 1 - 10 out of 81

2024


Abdelmonem, A. M., Lavrentieva, A., & Bigall, N. C. (2024). Fabrication of surface-functionalizable amphiphilic curcumin nanogels for biosensing and biomedical applications. Chemical papers, 78(1), 533-546. Advance online publication. https://doi.org/10.1007/s11696-023-03108-4
Fleischhammer, T. M., Dienemann, S., Ulber, N., Pepelanova, I., & Lavrentieva, A. (2024). Detection of Hypoxia in 2D and 3D Cell Culture Systems Using Genetically Encoded Fluorescent Hypoxia Sensors. In D. M. Gilkes (Ed.), Hypoxia: Methods and Protocols (Vol. 2755, pp. 31-48). (Methods in molecular biology (Clifton, N.J.)). Humana Press. https://doi.org/10.1007/978-1-0716-3633-6_2

2023


Dienemann, S., Schmidt, V., Fleischhammer, T., Mueller, J. H., & Lavrentieva, A. (2023). Comparative analysis of hypoxic response of human microvascular and umbilical vein endothelial cells in 2D and 3D cell culture systems. Journal of cellular physiology, 238(5), 1111-1120. https://doi.org/10.1002/jcp.31002
Dzhuzha, A. Y., Tarasenko, I. I., Atanase, L. I., Lavrentieva, A., & Korzhikova-Vlakh, E. G. (2023). Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. International Journal of Molecular Sciences, 24(2), Article 1049. Advance online publication. https://doi.org/10.3390/ijms24021049
Jopp, S., Fleischhammer, T., Lavrentieva, A., Kara, S., & Meyer, J. (2023). Synthesis, biocompatibility, and antimicrobial properties of glucose-based ionic liquids. RSC Sustainability, 1(7), 1751-1764. https://doi.org/10.1039/d3su00191a
Kirsch, M., Morales-Dalmau, J., & Lavrentieva, A. (2023). Cultivated meat manufacturing: Technology, trends, and challenges. Engineering in life sciences, 23(12), Article e2300227. https://doi.org/10.1002/elsc.202300227
Leonovich, M., Korzhikov-Vlakh, V., Lavrentieva, A., Pepelanova, I., Korzhikova-Vlakh, E., & Tennikova, T. (2023). Poly(lactic acid) and Nanocrystalline Cellulose Methacrylated Particles for Preparation of Cryogelated and 3D-Printed Scaffolds for Tissue Engineering. Polymers, 15(3 ), Article 651. https://doi.org/10.3390/polym15030651
Solomakha, O., Stepanova, M., Gofman, I., Nashchekina, Y., Rabchinskii, M., Nashchekin, A., Lavrentieva, A., & Korzhikova-Vlakh, E. (2023). Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties. Polymers, 15(12), Article 2714. https://doi.org/10.3390/polym15122714

2022


Averianov, I., Stepanova, M., Solomakha, O., Gofman, I., Serdobintsev, M., Blum, N., Kaftuirev, A., Baulin, I., Nashchekina, J., Lavrentieva, A., Vinogradova, T., Korzhikov-Vlakh, V., & Korzhikova-Vlakh, E. (2022). 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 110(11), 2422-2437. Advance online publication. https://doi.org/10.1002/jbm.b.35100
Averianov, I. V., Stepanova, M. A., Gofman, I. V., Lavrentieva, A., Korzhikov-Vlakh, V. A., & Korzhikova-Vlakh, E. G. (2022). Osteoconductive biocompatible 3D-printed composites of poly-d,l-lactide filled with nanocrystalline cellulose modified by poly(glutamic acid). Mendeleev communications, 32(6), 810-812. Advance online publication. https://doi.org/10.1016/j.mencom.2022.11.034