Dr. Detlef Bahnemann

Refereed Publications

(Updated 21.03.2016)

1. M. Bonifaciç, H. Möckel, D. Bahnemann, K.-D. Asmus
 “Formation of Positive Ions and Other Primary Species in the Oxidation of Sulphides by Hydroxyl Radicals”
 DOI: 10.1039/P29750000675

2. D. Bahnemann, K.-D. Asmus
 “Formation of a Sulphur-Sulphur Bridged Radical Cation During the Oxidation of 1,4-Dithian by Hydroxyl Radicals”
 DOI: 10.1039/c39750000238

3. K.-D. Asmus, D. Bahnemann, M. Bonifaciç, H. A. Gillis
 “Free Radical Oxidation of Organic Sulphur Compounds in Aqueous Solution”
 DOI: 10.1039/DC9776300213

4. K. Schäfer, M. Bonifaciç, D. Bahnemann, K.-D. Asmus
 “Addition of Oxygen to Organic Sulfur Radicals”
 J. Phys. Chem. 82 (1978) 2777-2780
 DOI: 10.1021/j100515a005

 “Metronidazole (Flagyl), Misonidazole (Ro 07-0582), Iron, Zinc, and Sulphur Compounds in Cancer Therapy”
 Br. J. Cancer 37, Suppl. III (1978) 16-19
 DOI/PMCID: PMC2149407

 “Free Radical Cascades and the Interaction of Radiosensitizers and Radioprotectors”
 Brit. J. Radiology 52 (1979) 600-601
 ISSN: 0007-1285
7. K.-D. Asmus, D. Bahnemann, Ch.-H. Fischer, D. Veltwisch
“Structure and Stability of Radical Cations from Cyclic and Open Chain Dithia Compounds in Aqueous Solutions”
J. Am. Chem. Soc. 101 (1979) 5322-5329
DOI: 10.1021/ja00512a035

8. J. E. Packer, R. L. Willson, D. Bahnemann, K.-D. Asmus
“Electron Transfer Reactions of Halogenated Aliphatic Peroxy Radicals: Measurement of Absolute Rate Constants by Pulse Radiolysis”
DOI: 10.1039/P29800000296

9. D. Bahnemann, K.-D. Asmus, R. L. Willson
“Free Radical Reactions of the Phenothiazine, Metizinic Acid”
DOI: 10.1039/P29810000890

10. D. Bahnemann, E. J. Hart
“Rate Constants of the Reaction of the Hydrated Electron and Hydroxyl Radical with Ozone in Aqueous Solution”
DOI: 10.1021/j100391a024

11. L. Forni, D. Bahnemann, E. J. Hart
“Mechanism of the Hydroxide Ion Initiated Decomposition of Ozone in Aqueous Solution”
DOI: 10.1021/j100391a025

12. D. Bahnemann, K.-D. Asmus, R.L. Willson
“Free Radical Induced One-electron Oxidation of the Phenothiazines, Chlorpromazine and Promethazine”
DOI: 10.1039/P29830001661

13. D. Bahnemann, K.-D. Asmus, R. L. Willson
“Phenothiazine Radical-Cations: Electron Transfer Equilibria with Iodide Ions and the Determination of One-electron Redox Potentials by Pulse Radiolysis”
DOI: 10.1039/P29830001669

14. J. Mönig, D. Bahnemann, K.-D. Asmus
“One-Electron Reduction of CCl₄ in Oxygenated Aqueous Solutions: A CCl₃O₂*-Free Radical Mediated Formation of Cl⁻ and CO₂”
DOI: 10.1016/0009-2797(83)90144-8
15. Z. Alfassi, D. Bahnemann, A. Henglein
 “Photochemistry of Colloidal Metal Sulfides. 3. Photoelectron Emission from CdS-ZnS Co-Colloids”
 DOI: 10.1021/j100221a002

 “Flash Photolysis Observation of the Absorption Spectra of Trapped Positive Holes and Electrons in Colloidal TiO$_2$”
 DOI: 10.1021/j150648a018

17. D. Bahnemann, A. Henglein, L. Spanhel
 “Detection of the Intermediates of Colloidal TiO$_2$-catalyzed Photoreactions”
 DOI: 10.1039/dc9847800151

 “One-Electron Induced Degradation of Halogenated Methanes and Ethanes in Oxygenated and Anoxic Aqueous Solutions”
 Life Chemistry Reports 3 (1985) 1-15
 ISSN: 0278-6281

19. D. Meissner, R. Memming, B. Kastening, D. Bahnemann
 “Fundamental Problems of Water Splitting at Cadmium Sulfide”
 DOI: 10.1016/0009-2614(86)80583-8

20. A. P. Hong, D. W. Bahnemann, M. R. Hoffmann
 “Co(II)Tetrasulfophthalocyanine on Titanium Dioxide: A New Efficient Electron Relay for the Photocatalytic Formation and Depletion of Hydrogen Peroxide in Aqueous Suspensions”
 J. Phys. Chem. 91 (1987) 2109-2117
 DOI: 10.1021/j100292a027

 “Efficient Photocatalysis of the Irreversible One-electron and Two-electron Reduction of Halothane on Platinized Colloidal Titanium Dioxide in Aqueous Suspension”
 J. Phys. Chem. 91 (1987) 3782-3788
 DOI: 10.1021/j100298a014

22. D. W. Bahnemann, C. Kormann, M. R. Hoffmann
 “Preparation and Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic Study”
 J. Phys. Chem. 91 (1987) 3789-3798
 DOI: 10.1021/j100298a015
23. D. W. Bahnemann, Ch.-H. Fischer, E. Janata, A. Henglein
 “The Two-Electron Oxidation of Methylviologen: Detection and Analysis of Two Fluorescing Products”
 DOI: 10.1039/f19878302559

24. D. W. Bahnemann, M. R. Hoffmann, A. P. Hong, C. Kormann
 “Photocatalytic Formation of Hydrogen Peroxide”
 DOI: 10.1021/bk-1987-0349.ch010

25. A. P. Hong, D. W. Bahnemann, M. R. Hoffmann
 “Cobalt(II)Tetrasulfophthalocyanine on Titanium Dioxide: II. Kinetics and Mechanisms of the Photocatalytic Oxidation of Aqueous Sulfur Dioxide”
 DOI: 10.1021/j100308a035

 “Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand”
 DOI: 10.1021/es00172a009

27. C. Kormann, D. W. Bahnemann, M. R. Hoffmann
 “Preparation and Characterization of Quantum-Size Titanium Dioxide (TiO$_2$)”
 DOI: 10.1021/j100329a027

28. B. C. Faust, M. R. Hoffmann, D. W. Bahnemann
 “Photocatalytic Oxidation of Sulfur Dioxide in Aqueous Suspensions of α-Fe$_2$O$_3$”
 DOI: 10.1021/j100354a021

29. C. Kormann, D. W. Bahnemann, M. R. Hoffmann
 “Environmental Photochemistry: Is Iron Oxide (Hematite) an Active Photocatalyst? A Comparative Study: α-Fe$_2$O$_3$, ZnO, TiO$_2$”
 DOI: 10.1016/1010-6030(89)87099-6

30. C. Kormann, D. W. Bahnemann, M. R. Hoffmann
 “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO$_2$ Suspensions”
 DOI: 10.1021/es00015a018
31. D. Bockelmann, R. Goslich, D. Bahnemann
 “Mechanistic Studies of Water Detoxification in Illuminated TiO₂ Suspensions”
 DOI: 10.1016/0165-1633(91)90091-X

32. D. W. Bahnemann
 “Ultrasmall Metal Oxide Particles: Preparation, Photophysical Characterization and Photocatalytic Properties”
 DOI: 10.1002/ijch.199300017

 “Photocatalytic Detoxification: Novel Catalysts, Mechanisms and Solar Applications”
 “Trace Metals in the Environment 3: Photocatalytic Purification and Treatment of Water and Air”, D.
 ISBN: 978-0444898555

34. D. Weichgrebe, A. Vogelpohl, D. Bockelmann, D. Bahnemann
 “Treatment of Landfill Leachates by Photocatalytic Oxidation using TiO₂: A Comparison with Alternative Photochemical Technologies”
 “Trace Metals in the Environment 3: Photocatalytic Purification and Treatment of Water and Air”, D.
 ISBN: 978-0444898555

35. D. Bockelmann, R. Goslich, D. Weichgrebe, D. Bahnemann
 “Solar Detoxification of Polluted Water: Comparing the Efficiencies of a Parabolic Trough Reactor and a novel Thin-Film-Fixed-Bed Reactor”
 “Trace Metals in the Environment 3: Photocatalytic Purification and Treatment of Water and Air”, D.
 ISBN: 978-0444898555

 “Photocatalytic Detoxification of Polluted Aquifers: Novel Catalysts and Solar Applications”
 ISBN: 978-0873718714

37. D. W. Bahnemann, J. Cunningham, M. A. Fox, E. Pelizzetti, P. Pichat, N. Serpone
 “Photocatalytic Treatment of Waters”
 ISBN: 978-0873718714

38. H. Gulyas, D. Bockelmann, L. Hemmerling, D. Bahnemann, I. Sekoulov
 “Treatment of Recalcitrant Organic Compounds in Oil Reclaiming Wastewater by Ozone/Hydrogen Peroxide and UV/Titanium Dioxide”
 ISSN: 0273-1223
39. D. Bahnemann
 “Solare Abwasserentgiftung”
 DOI: 10.1002/nadc.19940420413

40. M. Lindner, D. Bahnemann, B. Hirthe, W.-D. Griebler
 “Neue Katalysatoren zur Photokatalytischen Abwasserreinigung”

41. M. Hilgendorff, M. Hilgendorff, D. W. Bahnemann
 “Photokatalytische Reduktion Perhalogenierter Kohlenwasserstoffe an Platiniertem Titandioxid in
 Wäßriger Lösung”
 ISSN: 0863-0453

42. D. Bockelmann, D. Weichgrebe, R. Goslich, D. Bahnemann
 “Concentrating vs. Non-concentrating Reactors for Solar Water Detoxification”
 DOI: 10.1016/0927-0248(95)00005-4

 “Environmental Applications of Semiconductor Photocatalysis”
 DOI: 10.1021/cr00033a004

44. R. Dillert, M. Brandt, I. Fornefett, U. Siebers, D. Bahnemann
 “Photocatalytic Degradation of Trinitrotoluene and other Nitroaromatic Compounds”
 Chemosphere 30 (1995) 2333-2341
 DOI: 10.1016/0045-6535(95)00105-H

45. M. Hilgendorff, M. Hilgendorff, D. W. Bahnemann
 “Mechanisms of Photocatalysis: The Reductive Degradation of Tetrachloromethane in Aqueous
 Titanium Dioxide Suspensions”
 ISSN: 1203-8407

46. R. Dillert, I. Fornefett, U. Siebers, D. Bahnemann
 “Photocatalytic Degradation of Trinitrotoluene and Trinitrobenzene: Influence of Hydrogen Peroxide”
 DOI: 10.1016/1010-6030(95)04210-5

47. M. Bekbölte, M. Lindner, D. Weichgrebe, D. Bahnemann
 “Photocatalytic Detoxification with the Thin-Film Fixed-Bed Reactor (TFFBR): Clean-up of Highly
 Polluted Landfill Effluents Using a Novel TiO₂-Photocatalyst”
 Solar Energy 56 (1996) 455-469
 DOI: 10.1016/0038-092X(96)00020-5
 “Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study”
 Langmuir 12 (1996) 6368-6376
 DOI: 10.1021/LA960228T

49. M. Lindner, D. Bahnemann, B. Hirthe, W.-D. Griebler
 “Solar Water Detoxification: Novel TiO\textsubscript{2} Powders as Highly Active Photocatalysts”
 DOI: 10.1115/1.2887890

50. M. van Well, R. H. G. Dillert, D. W. Bahnemann, V. W. Benz, M. A. Müller
 “A Novel Non-concentrating Reactor for Solar Water Detoxification”
 DOI: 10.1115/1.2887888

 “Photocatalytic Degradation of Naphthalene and Anthracene: GC/MS Analysis of the Degradation Pathway”
 DOI: 10.1163/156856797X00457

52. R. Goslich, R. Dillert, D. Bahnemann
 “Solar Water Treatment: Principles and Reactors”
 DOI: 10.1016/S0273-1223(97)00019-X

53. M. Lindner, J. Theurich, D. W. Bahnemann
 DOI: 10.1016/S0273-1223(97)00012-7

 “Detoxification and Recycling of Wastewater by Solar-Catalytic Treatment”
 DOI: 10.1016/S0273-1223(97)00020-6

55. D. Bahnemann, M. Hilgendorff, R. Memming
 “Charge Carrier Dynamics at TiO\textsubscript{2} Particles: Reactivity of Free and Trapped Holes”
 DOI: 10.1021/JP9639915

56. M. Nahen, D. Bahnemann, R. Dillert, G. Fels
 “PhotocatalyticDegradationofTrinitrotoluene:ReductiveandOxidativePathways”
 DOI: 10.1016/S1010-6030(97)00171-8
Dr. Detlef Bahnemann: Refereed Publications

57. A. Klapproth, S. Linnemann, D. Bahnemann, R. Dillert, G. Fels
 “14C-Trinitrotoluene: Synthesis and Photocatalytic Degradation”
 DOI: 10.1002/(SICI)1099-1344(199804)41:4<337::AID-JLCR83>3.0.CO;2-Z

58. R. Dillert, U. Siemon, D. Bahnemann
 “Photokatalytische Desinfektion eines kommunalen Abwassers”
 Chem.-Ing.-Techn. 70 (1998) 308-310
 DOI: 10.1002/cite.330700320

59. R. Dillert, U. Siemon, D. Bahnemann
 “Photocatalytic Disinfection of Municipal Wastewater”
 DOI: 10.1002/(SICI)1521-4125(199804)21:4<356::AID-CEAT356>3.0.CO;2-H

60. J. Dzengel, J. Theurich, D. W. Bahnemann
 “Formation of Nitroaromatic Compounds in Advanced Oxidation Processes: Photolysis versus Photocatalysis”
 DOI: 10.1021/ES980358J

 “Field Studies of Solar Water Detoxification using Non Light Concentrating Reactors”
 ISSN: 1203-8407

62. R. Dillert, U. Siemon, D. Bahnemann
 “Photocatalytic Disinfection of Municipal Wastewater”
 DOI: 10.1002/(SICI)1521-4125(199804)21:4<356::AID-CEAT356>3.0.CO;2-H

63. R. Dillert, J. Huppatz, A. Renwrantz, U. Siebers, D. Bahnemann
 “Light-Induced Degradation of Nitroaromatic Compounds in Aqueous Systems: Comparison between Titanium Dioxide Photocatalysis and Photo-Fenton Reactions”
 ISSN: 1203-8407

64. M. Muneer, J. Theurich, D. Bahnemann
 “Formation of Toxic Intermediates upon the Photocatalytic Degradation of the Pesticide Diuron”
 DOI: 10.1163/156856799X00220

 “Photokatalytische Behandlung eines Industrieabwassers im Stegdoppelplattenreaktor”
 Chem.-Ing.-Techn. 71 (1999) 396-399
 DOI: 10.1002/cite.330710418
 “Solar-catalytic Treatment of an Industrial Wastewater”
 DOI: 10.1524/zpch.1999.213.Part_2.141

 “Laboruntersuchungen zur photokatalytischen Behandlung eines biologisch behandelten Industrieabwassers”
 gwf Wasser/Abwasser 140 (1999) 293-297
 ISSN: 0016-3651

 “Photocatalytic Treatment of an Industrial Wastewater in the Double-Skin Sheet Reactor”
 DOI: 10.1002/(SICI)1521-4125(199911)22:11<931::AID-CEAT931>3.0.CO;2-A

 “Large Scale Studies in Solar Catalytic Wastewater Treatment”
 Catalysis Today 54 (1999) 267-282
 DOI: 10.1016/S0920-5861(99)00188-1

70. D. W. Bahnemann
 “Current Challenges in Photocatalysis: Improved Photocatalysts and Appropriate Photoreactor Engineering”
 DOI: 10.1163/156856700X00255

71. O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, R. Goslich
 “Photocatalysis in Water Environments using Artificial and Solar Light”
 Catalysis Today 58 (2000) 199-230
 DOI: 10.1016/S0920-5861(00)00252-2

72. Q. W. Chen, D. W. Bahnemann
 “Reduction of Carbon Dioxide by Magnetite: Implications for the Primordial Synthesis of Organic Molecules”
 DOI: 10.1021/ja991278y

73. I. Arslan, I. A. Balcioglu, D. W. Bahnemann
 “Heterogeneous Photocatalytic Treatment of Simulated Dyehouse Effluent using TiO₂-Photocatalysts”
 DOI: 10.1016/S0926-3373(00)00117-X
74. C. Wang, D. W. Bahnemann, J. K. Dohrmann
“A Novel Preparation of Iron-Doped TiO₂ Nanoparticles with enhanced Photocatalytic Activity”
Chem. Commun. 16 (2000) 1539-1540
DOI: 10.1039/b002988m

75. I. Arslan, I. A. Balcioglu, T. Tuhanen, D. Bahnemann
“Advanced Oxidation of Simulated Reactive Dyehouse Wastewater: H₂O₂/UV-C and Fenton/UV-C versus TiO₂/UV-A Treatment Process”
DOI: 10.1061/(ASCE)0733-9372(2000)126:10(903)

76. I. Arslan, I. A. Balcioglu, D. W. Bahnemann
“Advanced Chemical Oxidation of Reactive Dyes in simulated Dyehouse Effluents by Ferrioxalate-Fenton/UV-A and TiO₂/UV-A Process”
DOI: 10.1016/S0143-7208(00)00082-6

77. I. Arslan, I. A. Balcioglu, D. W. Bahnemann
“Photochemical Treatment of Simulated Dyehouse Effluents by Novel TiO₂ Photocatalysts: Experience with the Thin Film Fixed Bed (TFFB) and Double Skin Sheet (DSS) Reactor”
DOI/PMID: 11695456

78. C. Wang, D. W. Bahnemann, J. K. Dohrmann
“Determination of Photonic Efficiency and Quantum Yield of Formaldehyde Formation in the Presence of various TiO₂ Photocatalysts”
DOI/PMID: 11695471

79. M. Muneer, D. Bahnemann
“Semiconductor-mediated Photocatalysed Degradation of two Selected Pesticide Derivatives, Terbacil and 2,4,5-Tribromoimidazole, in Aqueous Suspension”
DOI: 10.4028/www.scientific.net/MSF.486-487.61

80. M. Muneer, J. Theurich, D. Bahnemann
“Titanium Dioxide Mediated Photocatalytic Degradation of 1,2-Diethyl Phthalate”
DOI: 10.1016/S1010-6030(01)00525-1

81. G. Sagawe, A. Lehnard, M. Lübber, D. Bahnemann
“The Insulated Solar Fenton Hybrid Process: Fundamental Investigations”
Helvetica Chimica Acta 84 (2001) 3742-3759
DOI: 10.1002/1522-2675(20011219)84:12<3742::AID-HLCA3742>3.0.CO;2-Q
 “Photodestruction of Dichloroacetic Acid Catalyzed by Nano-sized TiO$_2$ Particles”
 DOI: 10.1016/S0926-3373(01)00301-0

83. I. A. Alaton, I. A. Balcioglu, D. W. Bahnemann
 “Advanced Oxidation of a Reactive Dyebath Effluent: Comparison of O$_3$, H$_2$O$_2$/UV-C and TiO$_2$/UV-A Processes”
 DOI: 10.1016/S0043-1354(01)00335-9

84. M. Muneer, D. Bahnemann
 “Semiconductor-mediated Photocatalysed Degradation of two Selected Pesticide Derivatives, Terbacil and 2,4,5-Tribromoimidazole, in Aqueous Solutions”
 Appl. Catalysis B: Environ. 36 (2002) 95-111
 DOI: 10.1016/S0926-3373(01)00282-X

85. M. Muneer, H. K. Singh, D. Bahnemann
 “Semiconductor-mediated Photocatalysed Degradation of two Selected Priority Organic Pollutants, Benzidine and 1,2-Diphenylhydrazine, in Aqueous Suspension”
 Chemosphere 49 (2002) 193-203
 DOI: 10.1016/S0045-6535(02)00190-X

86. D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, M. I. Litter
 “Enhancement of the Photocatalytic Activity of various TiO$_2$ Materials by Platinisation”
 DOI: 10.1016/S1010-6030(02)00048-5

 “Enhancement of Photocatalytic Activity by Semiconductor Heterojunctions: α-Fe$_2$O$_3$, WO$_3$ and CdS deposited on ZnO”
 DOI: 10.1016/S1010-6030(02)00055-2

 “Heterogeneous Photocatalytic Reactions Comparing TiO$_2$ and Pt/TiO$_2$”
 DOI: 10.1016/S1010-6030(02)00050-3

89. C. Wang, J. Rabani, D. W. Bahnemann, J. K. Dohrmann
 “Photonic Efficiency and Quantum Yield of Formaldehyde Formation from Methanol in the Presence of Various TiO$_2$ Photocatalysts”
 DOI: 10.1016/S1010-6030(02)00087-4
90. R. Gao, J. Stark, D. W. Bahnemann, J. Rabani
 “Quantum Yields of Hydroxyl Radicals in Illuminated TiO\textsubscript{2} Nanocrystallite Layers”
 DOI: 10.1016/S1010-6030(02)00066-7

91. M. P. Vinod, D. Bahnemann
 “Materials for All Solid-State Thin-Film Rechargeable Lithium Batteries by Sol-Gel Processing”
 DOI: 10.1007/s10008-001-0251-6

92. H. K. Singh, M. Muneer, D. Bahnemann
 “Photocatalysed Degradation of a Herbicide Derivative, Bromacil in Aqueous Suspensions of Titanium Dioxide”
 DOI: 10.1039/b206918k

93. M. A. Rahman, M. Muneer, D. Bahnemann
 “Photocatalysed Degradation of a Herbicide Derivative, Diphenamid in Aqueous Suspensions of Titanium Dioxide”
 DOI/PMID: 12664977

94. G. Sagawe, R. J. Brandi, D. Bahnemann, A. E. Cassano
 “Photocatalytic Reactors for Treating Water Pollution with Solar Illumination. I: A Simplified Analysis for Batch Reactors”
 DOI: 10.1016/S0009-2509(03)00128-3

95. G. Sagawe, R. J. Brandi, D. Bahnemann, A. E. Cassano
 “Photocatalytic Reactors for Treating Water Pollution with Solar Illumination. II: A Simplified Analysis for Flow Reactors”
 DOI: 10.1016/S0009-2509(03)00129-5

96. M. A. Rahman , M. Muneer, D. Bahnemann
 “Photocatalytic Degradation of Dimethyl Terephthalate in Aqueous Suspensions of Titanium Dioxide”
 DOI: 10.1163/156856703321328398

 “A Comparative Study of Nanometer sized Fe(III)-doped TiO\textsubscript{2} Photocatalysts: Synthesis, Characterization and Activity”
 DOI: 10.1039/b303716a
98. M. P. Vinod, D. Bahnemann, P. R. Rajamohan, K. Vijayamohan
“A Novel Luminescent Functionalized Siloxane Polymer”
DOI: 10.1021/jp034002s

“In situ Electron Microscopy Investigation of Fe(III)-doped TiO$_2$ Nanoparticles in an Aqueous Environment”
DOI: 10.1023/B:NANO.0000023222.85864.78

“Features and Efficiency of some Platinized TiO$_2$ Photocatalysts”
ISSN: 1226-086X

101. D. Hufschmidt, L. Liu, V. Selzer, D. Bahnemann
“Photocatalytic Water Treatment: Fundamental Knowledge required for its Practical Application”
DOI/PMID: 15077961

102. H. K. Singh, M. Muneer, D. W. Bahnemann
“Photocatalysed Degradation of a Herbicide Derivative, Maleic Hydrazide in Aqueous Suspensions of TiO$_2$”
ISSN: 1203-8407

103. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan
“Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd deposited on TiO$_2$ Catalyst”
DOI: 10.1016/j.watres.2004.04.046

104. C. Wang, R. Pagel, D. W. Bahnemann, J. K. Dohrmann
“Quantum Yield of Formaldehyde Formation in the Presence of Colloidal TiO$_2$–Based Photocatalysts: Effect of Intermittent Illumination, Platinization, and Deoxygenation”
DOI: 10.1021/jp048046s

105. D. Bahnemann
“Photocatalytic Water Treatment: Solar Energy Applications”
DOI: 10.1016/j.solener.2004.03.031
106. G. Sagawe, R. J. Brandi, D. Bahnemann, A. Cassano
 “Photocatalytic Reactors for Treating Water Pollution with Solar Illumination. III: A simplified Analysis for Recirculating Reactors”
 DOI: 10.1016/j.solener.2004.03.022

107. M. C. Hidalgo, S. Sakthivel, D. Bahnemann
 “Highly Photoactive and Stable TiO₂ Coatings on Sintered Glass”

108. M. Muneer, M. Saquib, M. Qamar, D. Bahnemann
 “Titanium-dioxide-mediated Photocatalysis Reaction of three selected Pesticide Derivatives”
 DOI: 10.1163/1568567041570320

109. C. B. Mendive, D. W. Bahnemann, M. A. Blesa
 “Microscopic Characterization of the Photocatalytic Oxidation of Oxalic Acid adsorbed onto TiO₂ by FTIR-ATR”
 Catalysis Today 101 (2005) 237-244
 DOI: 10.1016/j.cattod.2005.03.016

110. F. Dehn, D. Bahnemann, B. Bilger
 “Development of photocatalytically active coatings for concrete substrates”
 RILEM Proceedings PRO 41 (2005) 347-352
 DOI: 10.1617/2912143640.041

111. M. Muneer, M. Qamar, D. Bahnemann
 “Photoinduced Electron Transfer Reaction of few selected Organic Systems in Presence of Titanium Dioxide”
 DOI: 10.1016/j.molcata.2005.02.025

112. D. Bahnemann, M. Muneer, M. Qamar, M. A. Rahman, H. K. Singh
 “Semiconductor-mediated Photocatalysed Degradation of various Pesticide Derivatives and Other Priority Organic Pollutants in Aqueous Suspensions”
 Mat. Sci. For. 486-487 (2005) 61-64
 DOI: 10.4028/www.scientific.net/MSF.486-487.61

113. M. Muneer, D. Bahnemann, M. Qamar, M. A. Tariq, M. Faisal
 “Photocatalysed Reaction of few selected Organic Systems in Presence of Titanium Dioxide”
 DOI: 10.1016/j.apcata.2005.05.003
 “FT-IR-ATR as a Tool to probe Photocatalytic Interfaces”
 DOI: 10.1016/j.colsurfa.2004.10.137

115. G. Sagawe, R. J. Brandi, D. Bahnemann, A. E. Cassano
 “Photocatalytic Reactors for Treating Water Pollution with Solar Illumination: A simplified Analysis for n-steps Flow Reactors with Recirculation”
 Solar Energy 79 (2005) 262-269
 DOI: 10.1016/j.solener.2004.11.010

 “Photocatalytic Activity of Hydrophobized Mesoporous Thin Films of TiO₂”
 Micropor. Mesopor. Mat. 84 (2005) 247-253
 DOI: 10.1016/j.micromeso.2005.05.039

 “The Photocatalytic Destruction of the Cyanotoxin, Nodularin using TiO₂”
 DOI: 10.1016/j.apcatb.2005.03.006

118. M. Muneer, M. Qamar, M. Saquib, D. W. Bahnemann
 “Heterogeneous Photocatalysed Reaction of three Selected Pesticide Derivatives, Propham, Propachlor and Tebuthiuron in Aqueous Suspensions of Titanium Dioxide”
 Chemosphere 61 (2005) 457-468
 DOI: 10.1016/j.chemosphere.2005.03.006

119. M. C. Hidalgo, D. Bahnemann
 “Highly Photoactive Supported TiO₂ prepared by Thermal Hydrolysis of TiOSO₄: Optimisation of the Method and Comparison with other Synthetic Routes”
 DOI: 10.1016/j.apcatb.2005.06.004

120. M. Qamar, M. Muneer, D. Bahnemann
 “Titanium-dioxide-mediated Photocatalysed Reaction of Selected Organic Systems”
 Res. Chem. Intermed. 31 (2005) 807-817
 DOI: 10.1163/156856705774576164

121. P. K. J. Robertson, D. W. Bahnemann, J. M. C. Robertson, F. Wood
 “Photocatalytic Detoxification of Water and Air”
 DOI: 10.1007/b138189
122. S. J. Hug, D. Bahnemann
“Infrared Spectra of Oxalate, Malonate and Succinate adsorbed on the Aquous Surface of Rutile, Anatase and Lepidocrocite measured with in situ ATR-FTIR”
DOI: 10.1016/j.elspec.2005.05.006

“A Fine Route to Tune the Photocatalytic Activity of TiO₂”
DOI: 10.1016/j.apcatb.2005.08.011

“Photonic Efficiency for Methanol Photooxidation and Hydroxyl Radical Generation on Silica-supported TiO₂ Photocatalysts”
DOI: 10.1016/j.apcatb.2005.07.013

125. J. Marugan, D. Hufschmidt, G. Sagawe, V. Selzer, D. Bahnemann
“Optical Density and Photonic Efficiency of Silica-supported TiO₂ Photocatalysts”

126. M. A. Rahman, M. Qamar, M. Muneer, D. Bahnemann
“Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide”
ISSN: 1203-8407

“Antenna Mechanism and Deaggregation Concept: Novel Mechanistic Principles for Photocatalysis”
C. R. Chimie 9 (2006) 761-773
DOI: 10.1016/j.crci.2005.02.053

128. M. Qamar, M. Muneer, D. Bahnemann
“Heterogeneous Photocatalysed Degradation of two Selected Pesticide Derivatives, Triclopyr and Daminozid in Aqueous Suspensions of Titanium Dioxide”

129. C. B. Mendive, T. Bredow, M. A. Blesa, D. W. Bahnemann
“ATR-FTIR Measurements and Quantum Chemical Calculations concerning the Adsorption and Photo reaction of Oxalic Acid on TiO₂”
DOI: 10.1039/b518007b
130. M. M. Haque, M. Muneer, D. W. Bahnemann
 “Semiconductor-Mediated Photocatalyzed Degradation of a Herbicide Derivative, Chlorotoluron, in Aqueous Suspensions”
 DOI: 10.1021/es060051h

 “Titanium Dioxide mediated Photocatalysed Degradation of Phenoxyacitic Acid and 2,4,5-Trichlorophenoxoacetic Acid in Aqueous Suspensions”
 DOI: 10.1016/j.molcata.2006.08.088

132. I. G. Bryden, P. K. J. Robertson, D. W. Bahnemann
 “Anthropogenic Climate Change: Issues and Discussions”

133. B. C. Choi, L. H. Xu, H. T. Kim, D. W. Bahnemann
 “Photocatalytic Characteristics on Sintered Glass and Microreactor”
 ISSN: 1226-086X

134. C. McCullagh, J. M. C. Robertson, D. W. Bahnemann, P. K. J. Robertson
 DOI: 10.1163/15685670779238775

135. M. A. Tariq, M. Faisal, M. Muneer, D. Bahnemann
 “Photochemical Reactions of a few Selected Pesticide Derivatives and other Priority Organic Pollutants in Aqueous Suspensions of Titanium Dioxide”
 DOI: 10.1016/j.molcata.2006.10.013

136. D. Friedmann, H. Hansing, D. Bahnemann
 “Primary Processes during the Photodeposition of Ag Clusters on TiO₂ Nanoparticles”
 DOI: 10.1524/zpch.2007.221.3.329

137. R. Dillert, D. Bahnemann, H. Hidaka
 “Light-induced Degradation of Perfluorocarboxylic Acids in the Presence of Titanium Dioxide”
 Chemosphere 67 (2007) 785-792
 DOI: 10.1016/j.chemosphere.2006.10.023

 “Antenna Mechanism and De-Aggregation Concept: Novel Mechanistic Principles for Photocatalysis”
 Materials Science Forum 544-545 (2007) 17-22
 DOI: 10.4028/www.scientific.net/MSF.544-545.17
139. A. Feldhoff, C. Mendive, T. Bredow, D. Bahnemann
 “Direct Measurement of Size, Three-Dimensional Shape, and Specific Surface Area of Anatase
 Nanocrystals”
 DOI: 10.1002/cphc.200700084

140. D. W. Bahnemann, M. Muneer, M. M. Haque
 “Titanium Dioxide-mediated Photocatalysed Degradation of few Selected Organic Pollutants in
 Aqueous Suspensions”
 DOI: 10.1016/j.cattod.2007.03.031

141. C. B. Mendive, M. A. Blesa, D. Bahnemann
 “The Adsorption and Photodegradation of Oxalic Acid at the TiO₂ Surface”
 DOI: 10.2166/wst.2007.398

142. S. Horikoshi, M. Kajitani, N. Horikoshi, R. Dillert, D. W. Bahnemann
 “Use of Microwave Discharge Electrodeless Lamps (MDEL). II. Photodegradation of Acetaldehyde
 over TiO₂ Pellets”
 DOI: 10.1016/j.jphotochem.2007.07.015

143. J. Tschirch, D. Bahnemann, M. Wark, J. Rathousky
 “A Comparative Study into the Photocatalytic Properties of Thin Mesoporous Layers of TiO₂ with
 Controlled Mesoporosity”
 DOI: 10.1016/j.jphotochem.2007.08.005

144. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer
 “Photodegradation of Methylene Blue in Water, a Standard Method to Determine the Activity of
 Photocatalytic Coatings?”
 DOI: 10.1163/156856708784040588

145. C. B. Mendive, T. Bredow, A. Feldhoff, M. Blesa, D. Bahnemann
 “Adsorption of Oxalate on Rutile Particles in Aqueous Solutions: a Spectroscopic, Electron-
 Microscopic and Theoretical Study”
 DOI: 10.1039/b800140p

146. Y. Li, R. Dillert, D. Bahnemann
 “Preparation of Porous CdIn₂S₄ Photocatalyst Films by Hydrothermal Crystal Growth at
 Solid/Liquid/Gas Interfaces”
 DOI: 10.1016/j.tsf.2007.10.004
147. M. Vormoor, R. Dillert, D. Bahnemann
“Nanotechnologie zum Anfassen: Lichtinduzierte Superhydrophilie”
Nanoworld 01 (2008) 30-31

148. J. Tschirch, R. Dillert, D. Bahnemann
“Photocatalytic Degradation of Methylene Blue on Fixed Powder Layers: Which Limitations are to be Considered?”
ISSN: 1203-8407

149. V. M. Menendez-Flores, D. Friedmann, D. W. Bahnemann
“Durability of Ag-TiO₂ Photocatalysts Assessed for the Degradation of Dichloroacetic Acid”
Int. J. Photoenergy (2008) Article Number 280513
DOI: 10.1155/2008/280513

150. C. Baumanis, D. W. Bahnemann
“TiO₂ Thin Film Electrodes: Correlation between Photocatalytic Activity and Electrochemical Properties”
DOI: 10.1021/jp807655a

151. V. Kalousek, J. Tschirch, D. Bahnemann, J. Rathousky
“Mesoporous Layers of TiO₂ as Highly Efficient Photocatalysts for the Purification of Air”
Superlattices and Microstructures 44 (2008) 506-513
DOI: 10.1016/j.spmi.2007.12.004

152. A. Ismail, D. Bahnemann
“Synthesis of TiO₂/Au Nanocomposites via Sol-Gel Process for Photooxidation of Methanol”
ISSN: 1203-8407

153. M. N. Abellán, R. Dillert, J. Giménez, D. Bahnemann
“Evaluation of two Types of TiO₂-based Catalysts by Photodegradation of DMSO in Aqueous Suspension”
DOI: 10.1016/j.jphotochem.2008.11.020

154. C. B. Mendive, T. Bredow, A. Feldhoff, M. A. Blesa, D. Bahnemann
“Adsorption of Oxalate on Anatase (100) and Rutile (110) Particles in Aqueous Systems: Experimental Results vs. Theoretical Predictions”
DOI: 10.1039/b814608j

“Cytotoxicity of Titanium and Silicon Dioxide Nanoparticles”
DOI: 10.1088/1742-6596/170/1/012022
156. A. A. Ismail, D. W. Bahnemann, I. Bannat, M. Wark
“Gold Nanoparticles on Mesoporous Interparticle Networks of Titanium Dioxide Nanocrystals for Enhanced Photonic Efficiencies”
DOI: 10.1021/jp900766g

“Improving the Photocatalytic Performance of Mesoporous Titania Films by Modification with Gold Nanostructures”
Chem. Mater. 21 (2009) 1645-1653
DOI: 10.1021/cm803455k

158. T. A. Kandiel, R. Dillert, D. W. Bahnemann
“Enhanced Photocatalytic Production of Molecular Hydrogen on TiO₂ modified with Pt-Polypyrrole Nanocomposites”
DOI: 10.1039/b817456c

159. J. Bennani, R. Dillert, T. M. Gesing, D. Bahnemann
“Physical Properties, Stability, and Photocatalytic Activity of Transparent TiO₂/SiO₂ Films”
DOI: 10.1016/j.seppur.2009.03.019

160. A. Hakki, R. Dillert, D. Bahnemann
“Photocatalytic Conversion of Nitroaromatic Compounds in the Presence of TiO₂”
Catalysis Today 144 (2009) 154-159
DOI: 10.1016/j.cattod.2009.01.029

“The Photocatalytic Decomposition of Microcystin-LR using selected Titanium Dioxide Materials”
Chemosphere 76 (2009) 549-553
DOI: 10.1016/j.chemosphere.2009.02.067

162. H. Zhang, G. Chen, D. W. Bahnemann
“Photoelectrocatalytic Materials for Environmental Applications”
DOI: 10.1039/b821991e

163. E. N. Golubeva, D. N. Kharitonov, D. I. Kochubey, V. N. Ikorskü, V. V. Kriventsov, A. I. Kokorin, J. Stoetzner, D. W. Bahnemann
“Formation of Active Catalysts in the System: Chlorocuprates – CCl₄ – n-C₁₀H₂₂”
DOI: 10.1021/jp900742r
164. A. A. Ismail, D. W. Bahnemann, L. Robben, V. Yarovyi, M. Wark
 “Palladium Doped Porous Titania Photocatalysts: Impact of Mesoporous Order and Crystallinity”
 DOI: 10.1021/cm902500e

 “Untersuchungen zur Zytotoxizität von photokatalytisch aktiven Titandioxid-Nanopartikeln”
 Chemie Ingenieur Technik 82 (2010) 335-341
 DOI: 10.1002/cite.200900057

166. T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. W. Bahnemann
 “Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts”
 DOI: 10.1021/cm903472p

 “Direct Synthesis of Photocatalytically Active Rutile TiO₂ Nanorods Partly Decorated with Anatase Nanoparticles”
 DOI: 10.1021/jp912008k

168. M. Muneer, M. Saquib, M. Qamar, D. Bahnemann
 “Photocatalysed Reaction of Indole in an Aqueous Suspension of Titanium Dioxide”
 DOI: 10.1007/s11164-010-0122-9

169. N. P. Xekoukoulakatis, D. Mantzavinos, R. Dillert, D. Bahnemann
 “Synthesis and Photocatalytic Activity of Boron-doped TiO₂ in Aqueous Suspensions under UV-A Irradiation”
 DOI: 10.2166/wst.2010.150

 “Analysis of Photocatalytic Reactors Employing the Photonic Efficiency and the Removal Efficiency Parameters: Degradation of Radiation Absorbing and Nonabsorbing Pollutants”
 DOI: 10.1021/ie901753k

171. D. Friedmann, C. Mendive, D. Bahnemann
 “TiO₂ for Water Treatment: Parameters affecting the Kinetics and Mechanisms of Photocatalysis”
 DOI: 10.1016/j.apcatb.2010.05.014
172. A. A. Ismail, D. W. Bahnemann
 “Metal-Free Porphyrin-Sensitized Mesoporous Titania Films for Visible-Light Indoor Air Oxidation”
 DOI: 10.1002/cssc.201000158

173. A. A. Ismail, T. A. Kandiel, D. W. Bahnemann
 “Novel (and Better?) Titania-Based Photocatalysts: Brookite Nanorods and Mesoporous Structures”
 DOI: 10.1016/j.jphotochem.2010.05.016

 “Reaction Dynamics of the Transfer of Stored Electrons on TiO₂ Nanoparticles: A Stopped Flow Study”
 DOI: 10.1016/j.jphotochem.2010.09.024

175. A. A. Ismail, D. W. Bahnemann
 “One-Step Synthesis of Mesoporous Platinum/Titania Nanocomposites as Photocatalysts with Enhanced Photocatalytic Activity for Methanol Oxidation”
 Green Chem. 13 (2011) 428-435
 DOI: 10.1039/c0gc00744g

176. R. Dillert, A. Hakki, D. Bahnemann
 “(Green) photocatalytic synthesis employing nitroaromatic compounds”
 DOI: 10.1557/opl.2011.760

177. V. M. Menéndez-Flores, D. W. Bahnemann, T. Ohno
 “Visible Light Photocatalytic Activities of S-doped TiO₂-Fe³⁺ in Aqueous and Gas Phase”
 DOI: 10.1016/j.apcatb.2011.01.015

178. T. A. Kandiel, R. Dillert, L. Robben, D. Bahnemann
 “Photonic Efficiency and Mechanism of Photocatalytic Hydrogen Production over Platinized Titanium Dioxide from Aqueous Methanol Solutions”
 Catalysis Today 161 (2011) 196-201
 DOI: 10.1016/j.cattod.2010.08.012

179. M. K. Nowotny, D. W. Bahnemann
 “Improved Photocatalytic Performance of Rutile TiO₂”
 DOI: 10.1002/pssr.201004511
 “Kinetic and Mechanistic Investigations of Multielectron Transfer Reactions Induced by Stored
 Electrons in TiO$_2$ Nanoparticles: A Stopped Flow Study”
 DOI: 10.1021/jp108958w

181. A. A. Ismail, D. W. Bahnemann
 “Mesostructured Pt/TiO$_2$ Nanocomposites as Highly Active Photocatalysts for the Photooxidation of
 Dichloroacetic Acid”
 DOI: 10.1021/jp110959b

182. A. A. Ismail, L. Robben, D. W. Bahnemann
 “Study of the Efficiency of UV and Visible-Light Photocatalytic Oxidation of Methanol on
 Mesoporous RuO$_2$/TiO$_2$ Nanocomposites”
 DOI: 10.1002/cphc.201000936

183. O. Merka, V. Yarovyi, D. W. Bahnemann, M. Wark
 “pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb$_3$Nb$_4$O$_{13}$”
 DOI: 10.1021/jp108637r

 “Multilayered Ordered Mesoporous Platinum/Titania Composite Films: Does the Photocatalytic
 Activity Benefit from the Film Thickness?”
 J. Mater. Chem. 21 (2011) 7802-7810
 DOI: 10.1039/c1jm10366k

185. R. Fateh, A. A. Ismail, R. Dillert, D. W. Bahnemann
 “Highly Active Crystalline Mesoporous TiO$_2$ Films Coated onto Polycarbonate Substrates for Self-
 Cleaning Applications”
 DOI: 10.1021/jp200892z

186. H. H. Mohamed, R. Dillert, D. W. Bahnemann
 “Growth and Reactivity of Silver Nanoparticles on the Surface of TiO$_2$: A Stopped-Flow Study”
 DOI: 10.1021/jp2031576

187. L. Robben, A. A. Ismail, D. W. Bahnemann, J.-C. Buhl
 “Influence of the Interdependency between Matrix Material and Pore System on the Small Angle X-
 Ray Scattering in Ordered Mesoporous Materials”
 Micropor. Mesopor. Mat. 143 (2011) 277-283
 DOI: 10.1016/j.micromeso.2011.03.011
“Synthesis of Flower Like Zinc Oxide Nanostructure and its Application as a Photocatalyst”
DOI: 10.1016/j.seppur.2011.04.019

189. S. Wagner, J. Bloh, C. Kasper, D. Bahnemann
“Toxicological Issues of Nanoparticles Employed in Photocatalysis”
Green 1 (2011) 171-188
DOI: 10.1515/green.2011.013

190. A. Mitsionis, T. Vaimakis, C. Trapalis, N. Todorova, D. Bahnemann, R. Dillert
“Hydroxyapatite/Titanium Dioxide Nanocomposites for Controlled Photocatalytic NO Oxidation”
DOI: 10.1016/j.apcatb.2011.05.047

191. A. A. Ismail, D. W. Bahnemann
“Mesoporous Titania Photocatalysts: Preparation, Characterization and Reaction Mechanisms”
J. Mater. Chem. 21 (2011) 11686-11707
DOI: 10.1039/c1jm10407a

“Photocatalytic Activities of Different Well-defined Single Crystal TiO₂ Surfaces: Anatase versus Rutile”
DOI: 10.1021/jz201156b

“A Study of the Kinetic Solvent Isotope Effect on the Destruction of Microcystin-LR and Geosmin using TiO₂ Photocatalysis”
DOI: 10.1016/j.apcatb.2011.07.019

194. L. Zhang, C. Baumanis, L. Robben, T. Kandiel, D. Bahnemann
Small 7 (2011) 2714-2720
DOI: 10.1002/smll.201101152

195. C. B. Mendive, D. Hansmann, T. Bredow, D. Bahnemann
“New Insights into the Mechanism of TiO₂ Photocatalysis: Thermal Processes beyond the Electron-Hole Creation”
DOI: 10.1021/jp112243q
196. T. A. Kandiel, A. A. Ismail, D. W. Bahnemann
“Mesoporous TiO$_2$ Nanostructures: A Route to Minimize Pt Loading on Titania Photocatalysts for Hydrogen Production”
DOI: 10.1039/c1cp22612f

197. C. Baumanis, J. Z. Bloh, R. Dillert, D. W. Bahnemann
“Hematite Photocatalysis: Dechlorination of 2,6-Dichloroindophenol and Oxidation of Water”
DOI: 10.1021/jp210279r

198. M. P. Bello Lamo, D. Bahnemann
“Photocatalytic Performance of S doped TiO$_2$ in Relation to Processing Conditions: Calcination temperature and Heating Rate”
DOI: 10.1179/143307511X13189528030799

199. A. Y. Ahmed, T. Oekermann, P. Lindner, D. Bahnemann
“Comparison of the Photoelectrochemical Oxidation of Methanol on Rutile TiO$_2$ (001) and (110) Single Crystal Faces studied by Intensity Modulated Photocurrent Spectroscopy”
DOI: 10.1039/c2cp23416e

200. P. K. J. Robertson, J. M. C. Robertson, D. W. Bahnemann
“Removal of Microorganisms and their Chemical Metabolites from Water using Semiconductor Photocatalysis”
DOI: 10.1016/j.jhazmat.2011.11.058

“Influence of Inlet Concentration and Light Intensity on the Photocatalytic Oxidation of Nitrogen(II) Oxide at the Surface of Aeroxide TiO$_2$ P25”
J. Hazard. Mat. 211-212 (2012) 240-246
DOI: 10.1016/j.jhazmat.2011.11.041

“Kinetic and Mechanistic Investigations of the Light Induced Formation of Gold Nanoparticles on the Surface of TiO$_2$”
DOI: 10.1002/chem.201102799

“Facile Synthesis of Highly Ordered Mesoporous and Well Crystalline TiO$_2$: Impact of Different Gas Atmosphere and Calcination Temperatures on Structural Properties”
DOI: 10.1021/cm203203b
204. A. A. Ismail, A. Hakki, D. W. Bahnemann
“Mesostructure Au/TiO₂ Nanocomposites for Highly Efficient Catalytic Reduction of p-Nitrophenol”
DOI: 10.1016/j.molcata.2012.03.009

205. L. Zhang, R. Dillert, D. Bahnemann, M. Vormoor
“Photo-Induced Hydrophilicity and Self-Cleaning: Models and Reality”
DOI: 10.1039/c2ee03390a

206. A. A. Ismail, D. W. Bahnemann, S. A. Al-Sayari
“Synthesis and Photocatalytic Properties of Nanocrystalline Au, Pd and Pt Photodeposited onto Mesoporous RuO₂/TiO₂ Nanocomposites”
DOI: 10.1016/j.apcata.2012.04.024

207. X. Vargas, E. Tauchert, J.-M. Marin, G. Restrepo, R. Dillert, D. Bahnemann
“Fe-doped Titanium Dioxide Synthesized: Photocatalytic Activity and Mineralization Study for Azo Dye”
DOI: 10.1016/j.jphotochem.2012.06.001

“Composite Hydroxyapatite/TiO₂ Materials for Photocatalytic Oxidation of NOₓ”
DOI: 10.1016/j.mseb.2012.05.014

209. H. H. Mohamed, R. Dillert, D. W. Bahnemann
DOI: 10.1016/j.jphotochem.2012.06.022

210. A. A. Ismail, D. W. Bahnemann
“Pt Colloidal Accommodated into Mesoporous TiO₂ Films for Photooxidation of Acetaldehyde in Gas Phase”
DOI: 10.1016/j.cej.2012.07.022

211. J. Z. Bloh, R. Dillert, D. W. Bahnemann
“Transition Metal-modified Zinc Oxides for UV and Visible Photocatalysis”
DOI: 10.1007/s11356-012-0932-y
212. J. B. Nehmann, S. Kajari-Schröder, D. W. Bahnemann
“Analysis Methods for Meso- and Macroporous Silicon Etching Baths”
Nanoscale Research Letters 7 (2012) 398
DOI: 10.1186/1556-276X-7-398

213. Y. Zhiyong, D. Bahnemann, R. Dillert, S. Lin, L. Liqin
“Photocatalytic Degradation of Azo Dyes by BiOX (X=Cl, Br)”
DOI: 10.1016/j.molcata.2012.07.001

214. H. H. Mohamed, D. W. Bahnemann
“The Role of Electron Transfer in Photocatalysis: Fact and Fictions”
DOI: 10.1016/j.apcatb.2012.05.045

“Improved Photocatalytic Hydrogen Production by Structure Optimized Nonstoichiometric Y₂Ti₂O₇”
ChemCatChem. 4 (2012) 1819-1827
DOI: 10.1002/cctc.201200148

216. L. Zhang, H. H. Mohamed, R. Dillert, D. Bahnemann
DOI: 10.1016/j.jphotochemrev.2012.07.002

217. T. A. Kandiel, R. Dillert, D. Bahnemann
“Titanium Dioxide Nanoparticles and Nanostructures”
Current Inorganic Chemistry 2 (2012) 94-114
DOI: 10.2174/187794411202020094

218. J. Z. Bloh, R. Dillert, D. W. Bahnemann
“Designing Optimal Metal-Doped Photocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size”
DOI: 10.1021/jp307313z

DOI: 10.1016/j.apcatb.2012.09.024

220. A. Hakki, R. Dillert, D. W. Bahnemann
“Factors Affecting the Selectivity of the Photocatalytic Conversion of Nitroaromatic Compounds over TiO₂ to Valuable Nitrogen-Containing Organic Compounds”
DOI: 10.1039/c2cp44153e
221. L. Zhang, D. Bahnemann
“Synthesis of Nanovoid Bi$_2$WO$_6$ 2D Ordered Arrays as Photoanodes for Photoelectrochemical Water Splitting”
ChemSusChem. 6 (2013) 283-290
DOI: 10.1002/cssc.201200708

222. J. Z. Bloh, R. Dillert, D. W. Bahnemann
“Zinc Oxide Photocatalysis: Influence of Iron and Titanium Doping and Origin of the Optimal Doping Ratio”
ChemCatChem. 5 (2013) 774-778
DOI: 10.1002/cctc.201200558

“Effects of Nonstoichiometry and Cocatalyst Loading on the Photocatalytic Hydrogen Production with (Y$_{1.5}$Bi$_{0.5}$)$_{1-x}$Ti$_2$O$_{7-3x}$ and (YBi)$_{1-x}$Ti$_2$O$_{7-3x}$ Pyrochlores”
J. Am. Ceram. Soc. 96 (2013) 634-642
DOI: 10.1111/jace.12013

224. R. Fateh, R. Dillert, D. Bahnemann
“Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO$_2$/SiO$_2$ Thin Films on Polycarbonate”
Langmuir 29 (2013) 3730-3739
DOI: 10.1021/la400191x

225. A. Hakki, R. Dillert, D. W. Bahnemann
“Arenesulfonic Acid-Functionalized Mesoporous Silica Decorated with Titania: A Heterogeneous Catalyst for the One-Pot Photocatalytic Synthesis of Quinolines from Nitroaromatic Compounds and Alcohols”
ACS Catal. 3 (2013) 565-572
DOI: 10.1021/cs300736x

226. T. A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann
“Brookite versus Anatase TiO$_2$ Photocatalysts: Phase Transformations and Photocatalytic Activities”
DOI: 10.1039/c2pp25217a

“Catalytic Role of Surface Oxygens in TiO$_2$ Photooxidation Reactions: Aqueous Benzene Photooxidation with Ti18O$_2$ under Anaerobic Conditions”
DOI: 10.1021/jz400580b

228. A. A. Ismail, S. S. Al-Sayari, D. W. Bahnemann
“Photodeposition of Precious Metals onto Mesoporous TiO$_2$ Nanocrystals with Enhanced their Photocatalytic Activity for Methanol Oxidation”
Catalysis Today 209 (2013) 2-7
DOI: 10.1016/j.cattod.2012.09.027
229. F. Riboni, L. G. Bettini, D. W. Bahnemann, E. Selli
 “WO$_3$-TiO$_2$ vs. TiO$_2$ Photocatalysts: Effect of the W Precursor and Amount on the Photocatalytic Activity of Mixed Oxides”
 Catalysis Today 209 (2013) 28-34
 DOI: 10.1016/j.cattod.2013.01.008

 “Photocatalytic Degradation of Oxalic and Dichloroacetic Acid on TiO$_2$ Coated Metal Substrates”
 Catalysis Today 209 (2013) 84-90
 DOI: 10.1016/j.cattod.2012.12.019

 “Tuning the Photocatalytic Selectivity of TiO$_2$ Anatase Nanoplates by Altering the Exposed Crystal Facets Content ”
 DOI: 10.1016/j.apcatab.2013.06.009

 “Preparation, Characterization and Photocatalytic Activity of Nanosized ZnO for the Degradation of Rhodamine B Dye and Simulated Dyebath Effluent”
 DOI: 10.1166/sam.2013.1531

 “Solvent-free Hydrothermal Synthesis of Anatase TiO$_2$ Nanoparticles with Enhanced Photocatalytic Hydrogen Production Activity ”
 DOI: 10.1016/j.apcata.2013.06.033

234. J. Schneider, D. W. Bahnemann
 “Undesired Role of Sacrificial Reagents in Photocatalysis”
 DOI: 10.1021/jz4018199

235. A. Hakki, R. Dillert, D. W. Bahnemann
 “Photocatalysis as an Auspicious Synthetic Route Towards Nitrogen Containing Organic Compounds”
 Current Organic Chemistry 17 (2013) 2482-2502
 DOI: 10.2174/13852728113179990061

 “Enhancing the Photocatalytic Activity of TiO$_2$ by pH Control: A Case Study for the Degradation of EDTA ”
 DOI: 10.1039/c3cy00494e
 “Light Intensity Dependence of the Kinetics of the Photocatalytic Oxidation of Nitrogen(II) Oxide at
 the Surface of TiO₂”
 DOI: 10.1039/c3cp54469a

 “From Ideal Reactor Concepts to Reality: The Novel Drum Reactor for Photocatalytic Wastewater
 Treatment”
 DOI: 10.1515/ijcre-2012-0012

 “Large-scale Synthesis of Urchin-like Mesoporous TiO₂ Hollow Spheres by Targeted Etching and
 Their Photoelectrochemical Properties”
 DOI: 10.1002/adfm.201300946

240. O. Merka, D. W. Bahnemann, M. Wark
 “Photocatalytic Hydrogen Production with Non-Stoichiometric Pyrochlore Bismuth Titanate”
 Catalysis Today 225 (2014) 102-110
 DOI: 10.1016/j.cattod.2013.09.009

241. J. Z. Bloh, R. Dillert, D. W. Bahnemann
 “Ruthenium-modified Zinc Oxide, a Highly Active Vis-Photocatalyst: the Nature and Reactivity of
 Photoactive Centres”
 DOI: 10.1039/c3cp55136a

242. R. Fateh, R. Dillert, D. Bahnemann
 “Self-Cleaning Properties, Mechanical Stability, and Adhesion Strength of Transparent Photocatalytic
 TiO₂-ZnO Coatings on Polycarbonate”
 ACS Appl. Mater. Interfaces 6 (2014) 2270-2278
 DOI: 10.1021/am4051876

 “Aluminum-doped Zinc Oxide Sol-Gel Thin Films: Influence of the Sol’s Water Content on the
 Resistivity”
 DOI: 10.1016/j.tsf.2014.01.052

244. L. M. Ahmed, I. Ivanova, F. H. Hussein, D. W. Bahnemann
 “Role of Platinum Deposited on TiO₂ in Photocatalytic Methanol Oxidation and Dehydrogenation
 Reactions”
 Int. J. Photoenergy (2014) Article Number 503516
 DOI: 10.1155/2014/503516
245. T. A. Kandiel, I. Ivanova, D. W. Bahnemann
 “Long-term Investigation of the Photocatalytic Hydrogen Production on Platinized TiO₂: An Isotopoic Study”
 Energy Environ. Sci. 7 (2014) 1420-1425
 DOI: 10.1039/C3EE41511B

246. J. H. Pan, Q. Wang, D. W. Bahnemann
 “Hydrous TiO₂ Spheres: An Excellent Platform for the Rational Design of Mesoporous Anatase Spheres for Photoelectrochemical Applications”
 Catalysis Today 230 (2014) 197-204
 DOI: 10.1016/j.cattod.2013.08.007

 “Synthesis and Photocatalytic Activity of Mesoporous Nanocrystalline Fe-doped Titanium Dioxide”
 Catalysis Today 230 (2014) 158-165
 DOI: 10.1016/j.cattod.2013.10.040

 “Photokatalyse und selbstreinigende Beschichtungen: Reinigen mit Licht und Regen”
 Chem. Unserer Zeit 48 (2014) 92-100
 DOI: 10.1002/ciuz.201400633

249. J. Freitag, D. W. Bahnemann
 “Evaluation of the Photocatalytic (visible-light) Activity of Cold Gas Sprayed TiO₂ Layers on Metal Sheets”
 DOI: 10.1002/pssr.201409098

250. A. A. Ismail, D. W. Bahnemann
 “Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review”
 DOI: 10.1016/j.solmat.2014.04.037

 “The Nature of Chlorine-Inhibition of Photocatalytic Degradation of Dichlororacetic Acid in a TiO₂-based Microreactor”
 DOI: 10.1039/c4cp01043d

252. J. F. Montoya, M. F. Atitar, D. W. Bahnemann, J. Peral, P. Salvador
 “Comprehensive Kinetic and Mechanistic Analysis of TiO₂ Photocatalytic Reactions According to the Direct-Indirect Model: (II) Experimental Validation”
 DOI: 10.1021/jp4121657
 “Photocatalytic Degradation of Anthracene in Closed System Reactor”
 Int. J. Photoenergy (2014) Article ID 503825
 DOI: 10.1155/2014/503825

 “Catalytic Role of TiO₂ Terminal Oxygen Atoms in Liquid-Phase Photocatalytic Reactions: Oxidation
 of Aromatic Compounds in Anhydrous Acetonirile”
 DOI: 10.1002/cphc.201402043

 “Understanding TiO₂ Photocatalysis: Mechanisms and Materials”
 Chem. Rev. 114 (2014) 9919-9986
 DOI: 10.1021/cr5001892

 ACS Appl. Mater. Interfaces 6 (2014) 16859-16866
 DOI: 10.1021/am504269a

257. A. Y. Ahmed, T. A. Kandiel, I. Ivanova, D. Bahnemann
 “Photocatalytic and Photoelectrochemical Oxidation Mechanisms of Methanol on TiO₂ in Aqueous
 Solution”
 DOI: 10.1016/j.apsusc.2014.07.134

 “Preparation, Characterization, and Photocatalytic Applications of MWCNTs/TiO₂ Composite”
 Int. J. Photoenergy (2014) Article Number 475713
 DOI: 10.1155/2014/475713

 “Chemoselective and Highly Efficient Conversion of Aromatic Alcohols into Aldehydes Photocat-
 alyzed by Ag₃PO₄ in Aqueous Suspension under Simulated Sunlight”
 Catalysis Commun. 58 (2015) 34-39
 DOI: 10.1016/j.catcom.2014.08.025

260. C. B. Mendive, T. Bredow, J. Schneider, M. Blesa, D. Bahnemann,
 “Oxalic Acid at the TiO₂/Water Interface under UV(A) Illumination: Surface Reaction Mechanisms”
 J. Catalysis 322 (2015) 60-72
 DOI: 10.1016/j.jcat.2014.11.008

 “Determination of the Photocatalytic Deposition Velocity”
 DOI: 10.1016/j.cej.2014.03.040
“Mesoporous TiO$_2$ Nanocrystals as Efficient Photocatalysts: Impact of Calcination Temperature and
Phase Transformation on Photocatalytic Performance”
DOI: 10.1016/jcej.2014.11.075

263. M. Bello Lamo, M. Buering, D. Bahnemann
“Effect of Flowrate, Photocatalyst Loading and Illumination Conditions on the Photocatalytic
Disinfection of Recombinant *Escherichia Coli*”
DOI: 10.1179/1433075X13Y.0000000198

“Highly Efficient and Selective Oxidation of Aromatic Alcohols Photocatalyzed by Nanoporous
Hierarchical Pt/Bi$_2$WO$_6$ in Organic Solvent-Free Environment”
DOI: 10.1021/am507428r

“Photocatalytic Degradation of Different Chromophoric Dyes in Aqueous Phase Using La and Mo
Doped TiO$_2$ Hybrid Carbon Spheres”
DOI: 10.1016/j.jallcom.2015.01.222

“Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines”
DOI: 10.1155/2015/136765

“Nitrogen(II) Oxide Charge Transfer Complexes on TiO$_2$: A New Source for Visible-Light Activity”
DOI: 10.1021/jp5108069

“Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-
CaFe$_2$O$_4$/n-Fe$_2$O$_3$ Heterojunction Formation”
DOI: 10.1021/jp512804p

269. A. A. Ismail, I. Abdelfattah, M. F. Atitar, L. Robben, H. Bouzid, S. A. Al-Sayari, D. W. Bahnemann
“Photocatalytic Degradation of Imazapyr using Mesoporous Al$_2$O$_3$-TiO$_2$ Nanocomposites”
DOI: 10.1016/j.seppur.2015.03.012
270. A. F. Alkaim, R. Dillert, D. W. Bahnemann
“Effect of Polar and Movable (OH or NH₂ Groups) on the Photocatalytic H₂ Production of Alkyl-Alkanolamine: A Comparative Study”
DOI: 10.1080/09593330.2015.1024757

“Dependences of ZnO Photoinduced Hydrophilic Conversion on Light Intensity and Wavelengths”
DOI: 10.1021/acs.jpcc.5b00327

“Three Dimensional Spheroid Cell Culture for Nanoparticle Safety Testing”
DOI: 10.1016/j.jbiotec.2015.01.001

273. H. Kisch, D. Bahnemann
“Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields?”
DOI: 10.1021/acs.jpcllett.5b00521

“Application of the Stopped Flow Technique to the TiO₂-Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O₂ and H₂O₂ as Electron Acceptors”
DOI: 10.1021/acs.langmuir.5b00574

“Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells”
DOI: 10.1021/acsami.5b03396

276. F. Sambale, F. Stahl, D. Bahnemann, T. Scheper
“In Vitro Toxicological Nanoparticle studies under Flow Exposure”
DOI: 10.1007/s11051-015-3106-2

277. A. Engel, J. Große, R. Dillert, D. Bahnemann
“The Influence of Irradiance and Humidity on the Photocatalytic Conversion of Nitrogen(II) Oxide”
DOI: 10.1039/c5ra13291f
278. J. Freitag, D. Bahnemann
“Influence of the Metal Work Function on the Photocatalytic Properties of TiO₂ Layers on Metals”
Chem. Phys. Chem. 16 (2015), 2670-2679
DOI: 10.1002/cpch.201500281

“Charge carrier dynamics and photocatalytic behavior of TiO₂ nanopowders submitted to hydrothermal or conventional heat treatment”
RSC Adv. 5 (2015), 70536-70545
DOI: 10.1039/c5ra13291f

“Iterative Cellular Screening System for Nanoparticle Safety Testing”
J. Nanomater. 2015 (2015), 1-16
DOI: 10.1155/2015/691069

281. H. Belhadj, A. Hakki, P.K.J. Robertson, D. Bahnemann
“In situ ATR-FTIR study of H₂O and D₂O adsorption on TiO₂ under UV irradiation”
DOI: 10.1039/c5cp03947a

282. S. Ganesh Babu, R Vinoth, P. Surya Narayana, D. Bahnemann, B Neppolian
“Reduced graphene oxide wrapped Cu₂O supported on C₃N₄: An efficient visible light responsive semiconductor photocatalyst”
APL Materials 3 (2015), 104415
DOI: 10.1063/1.4928286

“Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe₂O₄) under visible light irradiation”
APL Materials 3 (2015), 104001
DOI: 10.1063/1.4931763

284. K.H. Leong, L.C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, P. Saravanan
“Reduced graphene oxide and Ag wrapped TiO₂ photocatalyst for enhanced visible light photocatalysis”
APL Materials 3 (2015), 104503
DOI: 10.1063/1.4926454

“Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions”
J. Phys. Chem. Lett. 6 (2015), 3903-3910
DOI: 10.1021/acs.jpclett.5b01353
286. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai
“Visible-light activation of TiO$_2$ photocatalysts: Advances in theory and experiments”
DOI: 10.1016/j.jphotochemrev.2015.08.003

287. C.B. Mendive, T. Bredow, J. Schneider, M. Blesa, D. Bahnemann
“Corrigendum to Oxalic acid at the TiO$_2$/water interface under UV(A) illumination. Surface reaction mechanisms”
J. Catal. 322 (2015), 570
DOI: 10.1016/j.jcat.2015.08.007

“A Facile Surface Passivation of Hematite Photoanodes with TiO$_2$ Overlayers for Efficient Solar Water Splitting”
ACS Appl. Mater. Interfaces 7 (2015), 24053–24062
DOI: 10.1021/acsami.5b07065

“Dependences of ZnO Photoinduced Hydrophilic Conversion on Light Intensity and Wavelengths”
DOI: 10.1021/acs.jpcc.5b00327

“Electrochemical deposition of Fe$_2$O$_3$ in the presence of organic additives: a route to enhanced photoactivity”
RSC Adv. 5 (2015), 103512–103522
DOI: 10.1039/c5ra21290a

291. S.J. Wolter, M. Köntges, D. Bahnemann, R. Brendel
“Stable anodes for lithium ion batteries made of self-organized mesoporous silicon”
Semicon. Sci. Technol. 31 (2016), 014007
DOI: 10.1088/0268-1242/31/1/014007

“Facile fabrication of visible light induced Bi$_2$O$_3$ nanorod using conventional heat treatment method”
DOI: 10.1016/j.molstruc.2015.11.014

“Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions”
DOI: 10.1002/anie.201508972
“Photoinduced hydrophilic conversion of hydrated ZnO surfaces”
J. Colloid Interface Sci. 466 (2016), 452-460
DOI: 10.1016/j.jcis.2015.08.015

“Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination”
J. Hazard. Mater. 307 (2016), 43-54
DOI: 10.1016/j.jhazmat.2015.12.041

“Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique”
DOI: 10.1002/cphc.201500949