Production of recombinant human growth hormone

Fabienne Anton¹, Alexander Tappe¹, Cornelia Kasper¹, Bernd-Ulrich Wilhelm¹, Thomas Scheper¹

¹ Institut für Technische Chemie, Callinistr. 3, 30167 Hannover
² Sartorius BBI Systems GmbH, Schwarzenberger Weg 73-79, 34212 Meschede

1. Introduction

The production of recombinant proteins for clinical use often requires mammalian cell cultures in order to ensure the correct folding and glycosylation of the desired protein. Due to long and expensive cultivation processes, it is necessary to optimise the process as well as the productivity of the host cells. This can be achieved by the choice of bioreactor or by the optimisation of the cultivation parameters like stirring speed, temperature, etc.

The aim of the study was to examine growth and productivity of the recombinant CHO hGH cells in different cell culture systems which shall result in higher cell densities and product concentration. Furthermore, the influence of temperature on cell growth and product formation was examined.

2. Material and Methods

Cell line:
CHO™ hGH: Chinese hamster ovary

Product:
Cells were transfected to produce hGH (human growth hormone)

Medium:
ProCHO4-CDM (BioWhittaker, USA), serum free and low protein concentration supplemented with 4 mM L-glutamine and 0.1 M MTX

Parameters being observed:
- cell count was carried out with the trypan blue method
- the amount of hGH was measured with a specific sandwich ELISA (Roche, Diagnostic GmbH, Germany).

3. Used cultivation systems

A. Cultivation in different culture systems

In the first part, several cultivation systems were tested towards their suitability for batch-cultivation. All cultures were grown at 37°C and 5% CO₂. The systems differed in oxygen supply and agitation. While cultures were grown at 37°C, 34°C, and 31°C in an incubator at 5% CO₂ and 20 rpm. The results show a significant increase in cell growth at a cultivation temperature of 31°C. A maximum concentration of hGH of 62.8 µg/ml is achieved.

B. Temperature experiments

Furthermore, the influence of temperature on cell growth and productivity was determined. The experiment was carried out in 250 ml spinner flask. The suspension batch cultures were grown at 37°C, 34°C, and 31°C, in an incubator at 3% CO₂ and 20 rpm. The results show an increase of living cells in the BelloCell 500. The highest hGH concentration is achieved in the RCCS-D. A maximum concentration of hGH of 49.0 µg/ml is achieved.

4. Results A.

Effect of cultivation system on cell growth

Fig. 1: 3D model of hGH

Effect of cultivation system on hGH production

The results show an increase of living cells in the BelloCell 500. The highest hGH concentration is achieved in the RCCS-D. A maximum concentration of hGH of 49.0 µg/ml is achieved.

4. Results B.

Effect of temperature on cell growth

Fig. 2: Number of living cells during the cultivation in different cultivation systems.

Effect of temperature on hGH production

The results show a significant increase in cell growth at a temperature of 31°C. A maximum concentration of hGH of 62.8 µg/ml is achieved.

5. Summary

Both experiments show that cell growth and productivity are influenced by the cultivation system as well as the temperature. Compared to traditional cultivation systems like spinner flask and Biostat B, the highest cell number is achieved in the BelloCell 500 but the maximum of hGH amount is achieved in the RCCS-D. The reduction of cultivation temperature in CHO batch cultures from 37°C to 34°C and 31°C has a positive influence of growth and productivity.

ACKNOWLEDGEMENT: The CHO cell line was provided by CCS Cell Culture Service GmbH (Hamburg). The BelloCell 500 was donated by CESCO Bioengineering Co. (Taiwan).