Publikationsliste Dr. Antonina Lavrentieva

Zeige Ergebnisse 1 - 10 von 73
1 2 3 4 5 6 7 Last


Dzhuzha, A. Y., Tarasenko, I. I., Atanase, L. I., Lavrentieva, A., & Korzhikova-Vlakh, E. G. (2023). Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. International Journal of Molecular Sciences, 24(2), [1049].

Leonovich, M., Korzhikov-Vlakh, V., Lavrentieva, A., Pepelanova, I., Korzhikova-Vlakh, E., & Tennikova, T. (2023). Poly(lactic acid) and Nanocrystalline Cellulose Methacrylated Particles for Preparation of Cryogelated and 3D-Printed Scaffolds for Tissue Engineering. Polymers, 15(3 ), [651].


Averianov, I., Stepanova, M., Solomakha, O., Gofman, I., Serdobintsev, M., Blum, N., Kaftuirev, A., Baulin, I., Nashchekina, J., Lavrentieva, A., Vinogradova, T., Korzhikov-Vlakh, V., & Korzhikova-Vlakh, E. (2022). 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 110(11), 2422-2437.

Averianov, I. V., Stepanova, M. A., Gofman, I. V., Lavrentieva, A., Korzhikov-Vlakh, V. A., & Korzhikova-Vlakh, E. G. (2022). Osteoconductive biocompatible 3D-printed composites of poly-d,l-lactide filled with nanocrystalline cellulose modified by poly(glutamic acid). Mendeleev communications, 32(6), 810-812.

Egger, D., Lavrentieva, A., Kugelmeier, P., & Kasper, C. (2022). Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products. Engineering in Life Sciences, 22(3-4), 361-372.

Iudin, D., Vasilieva, M., Knyazeva, E., Korzhikov-Vlakh, V., Demyanova, E., Lavrentieva, A., Skorik, Y., & Korzhikova-Vlakh, E. (2022). Hybrid Nanoparticles and Composite Hydrogel Systems for Delivery of Peptide Antibiotics. International Journal of Molecular Sciences, 23(5), [2771].

Lavrentieva, A. (2022). Optimization of the cultivation conditions of mesenchymal stem cells with regard to media supplementation, the complexity of the cell construct, and the influence of oxygen. [Habilitationsschrift, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover.

Osipova, O., Zakharova, N., Pyankov, I., Egorova, A., Kislova, A., Lavrentieva, A., Kiselev, A., Tennikova, T., & Korzhikova-Vlakh, E. (2022). Amphiphilic pH-sensitive polypeptides for siRNA delivery. Journal of Drug Delivery Science and Technology, 69, [103135].

Sauty, B., Santesarti, G., Fleischhammer, T., Lindner, P., Lavrentieva, A., Pepelanova, I., & Marino, M. (2022). Enabling Technologies for Obtaining Desired Stiffness Gradients in GelMA Hydrogels Constructs. Macromolecular Chemistry and Physics, 223(2), [2100326].

Schmitz, C., Pepelanova, I., Ude, C., & Lavrentieva, A. (2022). Studies on oxygen availability and the creation of natural and artificial oxygen gradients in gelatin-methacryloyl hydrogel 3D cell culture. Journal of Tissue Engineering and Regenerative Medicine, 16(11), 977-986.

Zeige Ergebnisse 1 - 10 von 73
1 2 3 4 5 6 7 Last